Genome Structure and Regulation

 Gene regulation diagram

Our research into gene regulation and epigenetics interfaces with cancer cell and stem cell biology, viral oncology (EBV and HPV), development and genome biology. We use both functional genomics and high throughput methods to determine how genetic abnormalities unravel the complex regulatory networks that underlie cancer and normal development. In parallel we are studying the gene regulatory mechanisms that control the normal development and differentiation of stem cells.

 

Research Theme Lead and Deputy Lead

 

 

mueller-ferenc 4

Professor Ferenc Mueller 

Professor in Developmental Genetics / Research Theme Lead

 

View profile

 

monteiro-rui 2

Dr Rui Monteiro

Associate Professor / Research Theme Deputy Lead

 

View profile

 

 

 

Research groups

Gene Regulation
ResearcherResearch Group
Paul Badenhorst Drosophila development and epigenetics
Constanze Bonifer (Emeritus Professor) Epigenetics and gene regulation in blood cells
Teresa Carlomagno RNA editing, modification and metbolism
Peter Cockerill (Emeritus Professor) The molecular basis of acute myeloid leukaemia
Clare Davies
Jonathan Frampton Blood stem cells and leukaemia
Paloma Garcia Genome stability in stem cells
Susanne Gatz Clinical trials
John Halsall  Epigenetics, chromatin and gene expression
Maarten Hoogenkamp Epigenetics and gene regulation in blood cells
Rui Monteiro Haemato-vascular development and disease modelling
Ferenc Mueller Gene regulation and development in zebrafish
Joanna Parish HPV gene expression and replication
Eva Petermann DNA replication and genome stability
Sandeep Potluri  Paediatric leukaemia predisposition syndrome
Marco Saponaro Transcription-mediated genome instability
Bryan Turner (Emeritus Professor) Regulation of histone modifications
Csilla Varnai  Genome topology and gene regulation
Joseph Wragg  Paediatric sarcoma plasticity
Tianyi Zhang  Chromatin and gene regulation

 

Spotlight on marrow failure in a zebrafish model of GATA2 deficiency

The Monteiro group employed a zebrafish fish model to replicate what happens in patients who inherit the loss of one allele of the GATA2 gene who develop bone marrow failure and leukaemia. Zebrafish lacking a transcriptional enhancer needed for efficient GATA2 expression exhibit a gradual loss of myeloid blood cells, a skewing towards red blood cells, and an AML-like syndrome.

Cell Reports 42:112571 (2023). Christopher B Mahony, Lucy Copper, Pavle Vrljicak, Boris Noyvert, Chrystala Constantinidou, Sofia Browne, Yi Pan, Claire Palles, Sascha Ott, Martin R HiggsRui Monteiro. . doi: https://doi.org/10.1016/j.celrep.2023.112571          

A diagram of lineage skewing in GATA2-deficient zebrafish

GATA2 deficiency is a rare genetic bone marrow disorder in which patients are at increased risk of blood cancers. This is likely due to (i) GATA2-deficient blood stem cells in bone marrow producing significantly fewer immune cells used to fight infection, and (ii) the GATA2 gene mutation resulting in impaired activity of genes that are involved in repairing ongoing damage to their DNA.

In humans, GATA2 haploinsufficiency due to mutations in coding or enhancer regions causes hematopoietic disorders collectively referred to as GATA2 deficiency syndromes. 75% of patients with inherited germline GATA2 mutations develop early-onset myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML).

In the zebrafish model employed here, both alleles of an enhancer controlling the gata2a locus were deleted. This generated a bona fide model of GATA2 deficiency that shows marrow hypocellularity, neutropenia, increased susceptibility to infections, and development of an AML-like phenotype in the adult kidney marrow. 

Spotlight on global analysis of enhancers that control blood cell development

New study uncovers the information encoded in our DNA required for the transcriptional control of blood cell development from embryonic stem cells

This publication from the Bonifer laboratory describes a novel genome-wide screen that identified and functionally characterised distinct subsets of gene regulatory elements that direct the different stages of the development of blood cells from embryonic stem cells (ESC)

Nature Communications 14:267 (2023). Edginton-White B, A Maytum, SG Kellaway, DK Goode, P Keane,. . . C BoniferA genome-wide relay of signalling-responsive enhancers drives hematopoietic specification.

Genome assay to define precise time course of activation of enhancers as detailed below.

This study of the genome investigated the functions of all of the regulatory elements within our DNA that are required to express our genes in the right cells, at the right levels, and at the right time. These regulatory elements are called enhancers and are scattered over large distances within the the 3 billion bases of DNA that make up the genome. Enhancers also function to integrate multiple highly specific intrinsic and extrinsic signals, whereby most regulatory elements only function in a subset of cells. The Bonifer laboratory developed a whole genome assay able to define the precise time course of activation of enhancers, and their responses to external signals, during the stepwise development of blood cells from ESCs. These analyses identified thousands of differentially active enhancers able to stimulate a promoter across different stages of blood cell development from ESCs. It also showed that blood cell-specific gene expression is controlled by the concerted action of thousands of differentiation stage-specific sets of enhancers and promoters, many of which respond to the cytokine signals promoting cell differentiation towards blood cells. This work highlights the mechanisms of how and where extrinsic signals program a cell type-specific regulatory landscape driving hematopoietic differentiation.

This methodology, which can now be adapted to any ESC-derived cell type, also provides a way to investigate how gene expression is sometimes perturbed by mutations in enhancers or external signals which cause disease. To understand how genes respond to outside signals and are deregulated in disease, we need to know where these enhancer elements are, when they are active and how they function. 

Spotlight on Cancer Genomics

Nature Genetics 51:151-162 (2019). Assi SA, MR Imperato, DJL Coleman, A Pickin, S Potluri, A Ptasinska, . . . PN CockerillC Bonifer. Subtype-specific regulatory network rewiring in acute myeloid leukemia. 

Gene structure and regulation diagram as detailed below

A study by Constanze Bonifer and Peter Cockerill has revealed the roles that different types of gene mutations play in causing acute myeloid leukaemia. Epigenetic profiling of regulatory elements revealed that mutation-specific subsets of AML have distinct patterns of gene expression. Each subset was controlled by distinct gene regulatory networks linked to mutations in transcription factors and signalling molecules This research brings us one step closer to being able to provide tailored and targeted treatment specific to individual patients, increasing their chances of survival.


Selected Highlights from Gene Structure and Regulation

Cell Reports 42:112571 (2023). Christopher B Mahony, Lucy Copper, Pavle Vrljicak, Boris Noyvert, Chrystala Constantinidou, Sofia Browne, Yi Pan, Claire Palles, Sascha Ott, Martin R Higgs, Rui Monteiro. . doi: https://doi.org/10.1016/j.celrep.2023.112571

Blood 2022019138 (2023). Clarke ML, RB Lemma, DS Walton, G Volpe, B Noyvert, OS Gabrielsen and J Frampton. . doi: 10.1182/blood.2022019138

Nature Commun 14:267 (2023). Edginton-White B, A Maytum, SG Kellaway, DK Goode, P Keane,. . . C Bonifer.

Dev Cell 58:155-170 e158 (2023). Hadzhiev Y, L Wheatley, L Cooper, F Ansaloni, C Whalley, Z Chen, . . . A Beggs, F Muller. .

Blood doi: 10.1182/blood.2021015036 (2022). Tirtakusuma R, K Szoltysek, P Milne, V Grinev, A Ptasinska, PS Chin, . . . C Bonifer, O Heidenreich, S Bomken. .

Elife 11 (2022). Vilaplana-Lopera N, V Cuminetti, R Almaghrabi, G Papatzikas, AK Rout, M Jeeves, . . . P Garcia. .

Nat Genet 54:1037-1050 (2022). Baranasic D, M Hortenhuber, PJ Balwierz, T Zehnder, AK Mukarram, C Nepal, . . . F Muller. .

Cancer Lett 501:172-186 (2021). Gleneadie HJ, AH Baker, N Batis, J Bryant, Y Jiang, SJH Clokie, H Mehanna, P Garcia, DMA Gendoo. . . JL Parish, FL Khanim, M Wiench

Front Immunol 12:642807 (2021). Bevington SL, R Fiancette, DW Gajdasik, P Keane, JK Soley, CM Willis, . . . PN Cockerill. .

Life Science Alliance 4 (2021). Kellaway SG, P Keane, B Edginton-White, K Regha, E Kennett and C Bonifer. .

Cell Reports 34:108759 (2021). Wang J, P Rojas, J Mao, M Muste Sadurni, O Garnier, S Xiao, . . . MR Higgs, P Garcia,  M Saponaro. .

Frontiers in Immunology 12:642807 (2021). Bevington SL, R Fiancette, DW Gajdasik, P Keane, JK Soley, CM Willis, . . . PN Cockerill. Stable .

EMBO Reports 22:e51120 (2021). Blakemore D, N Vilaplana-Lopera, R Almaghrabi, E Gonzalez, M Moya, C Ward, . .A Gambus, E Petermann, GS Stewart, P Garcia. .

Scientific Reports 11:3009 (2021). Halsall JA, S Andrews, F Krueger, CE Rutledge, G Ficz, W Reik and BM Turner. .

Cell Reports 35:109010 (2021). Potluri S, SA Assi, PS Chin, DJL Coleman, A Pickin, S Moriya, . . . PN Cockerill, C Bonifer. .

J General Virology 101:873-883 (2020). Hollingworth R, GS Stewart and RJ Grand. .

EMBO J:e105220 (2020). Bevington SL, P Keane, JK Soley, S Tauch, DW Gajdasik, R Fiancette, . . . PN Cockerill. . doi: 10.15252/embj.2020105220

Cell Rep 31:107748 (2020). Bevington SL, STH Ng, GJ Britton, P Keane, DC Wraith and PN Cockerill. .

Commun Biol 3:71 (2020). Dobrzycki T, CB Mahony, M Krecsmarik, C Koyunlar, R Rispoli, J Peulen-Zink, . . . R Monteiro. .

Haematologica  (2020). Kellaway SG, P Keane, E Kennett and C Bonifer. . DOI: 10.3324/haematol.2019.241885

Life Sci Alliance 3 (2020). Kwon SY, K Massey, MA Watson, T Hussain, G Volpe, CD Buckley, . . . P Badenhorst. .

Cell Rep 31:107691 (2020). Nafria M, P Keane, ES Ng, EG Stanley, AG Elefanty and C Bonifer. .

Nucleic Acids Res 48:8374-8392 (2020). Wragg JW, L Roos, D Vucenovic, N Cvetesic, B Lenhard and F Muller. .

J Virol 10.1128  (2020). Molloy DP and RJ Grand. S.

Nat Genet 51:151-162 (2019). Assi SA, MR Imperato, DJL Coleman, A Pickin, S Potluri, A Ptasinska, . . . PN Cockerill, C Bonifer. .

Nat Commun 10:3577 (2019). Bonkhofer F, R Rispoli, P Pinheiro, M Krecsmarik, J Schneider-Swales, IHC Tsang, . . . R Monteiro, T Peterkin, R Patient. .

Nat Commun 10:691 (2019). Hadzhiev Y, HK Qureshi, L Wheatley, L Cooper, A Jasiulewicz, H Van Nguyen, . . . F Muller. .

Cell Rep 28:3022-3031 e3027 (2019). Ptasinska A, A Pickin, SA Assi, PS Chin, L Ames, R Avellino, . . . C Bonifer. .

Cancer Cell 34:674-689 e678 (2018). de Boer B, J Prick, MG Pruis, P Keane, MR Imperato, J Jaques, . . . C Bonifer, JJ Schuringa..

Cancer Cell 34:626-642 e628 (2018). Martinez-Soria N, L McKenzie, J Draper, A Ptasinska, H Issa, S Potluri, . . . C Bonifer, O Heidenreich. .

Cell Rep 24:1496-1511 e1498 (2018). Ward C, G Volpe, P Cauchy, A Ptasinska, R Almaghrabi, D Blakemore, . . . P Garcia. . 

More Publications

J Immunol 199:2652-2667 (2017). Brignall R, P Cauchy, SL Bevington, B Gorman, AO Pisco, J Bagnall, . . . P Cockerill, P Paszek. .

J Virol 91 (2017). Harris L, L McFarlane-Majeed, K Campos-Leon, S Roberts and JL Parish. .

Cell Rep 19:1654-1668 (2017). Loke J, SA Assi, MR Imperato, A Ptasinska, P Cauchy, Y Grabovska, . . . C Bonifer. .

Nucleic Acids Res 45:9874-9888 (2017). Stanulovic VS, P Cauchy, SA Assi and M Hoogenkamp. .

Sci Rep 7:11148 (2017). Volpe G, DS Walton, DE Grainger, C Ward, P Cauchy, D Blakemore, . . . J Frampton. .

EMBO J 35:515-535 (2016). Bevington SL, P Cauchy, J Piper, E Bertrand, N Lalli, RC Jarvis, . . . PN Cockerill. .

PLoS Genet 12:e1005969 (2016). Kwon SY, V Grisan, B Jang, J Herbert and P Badenhorst..

Epigenetics Chromatin 9:52 (2016). Wiersma M, M Bussiere, JA Halsall, N Turan, R Slany, BM Turner and KP Nightingale. .

Leukemia 10:1038 (2016). Clarke M, G Volpe, L Sheriff, D Walton, C Ward, W Wei, . . . J Frampton. .

Dev Cell 36:572-587 (2016). Goode DK, N Obier, MS Vijayabaskar, ALM Lie, AJ Lilly, R Hannah, . . . C Bonifer. .

Dev Cell 38:358-370 (2016). Monteiro R, P Pinheiro, N Joseph, T Peterkin, J Koth, E Repapi, . . . R Patient. .

Cell Rep 12:821-836 (2015). Cauchy P, SR James, J Zacarias-Cabeza, A Ptasinska, MR Imperato, SA Assi, . . . PN Cockerill. .

J Virol 89:4770-4785 (2015). Paris C, I Pentland, I Groves, DC Roberts, SJ Powis, N Coleman, . . . JL Parish. .

Nat Commun 6:7203 (2015). Regha K, SA Assi, O Tsoulaki, J Gilmour, G Lacaud and C Bonifer..

Nature 507:381-385 (2014). Haberle V, N Li, Y Hadzhiev, C Plessy, C Previti, C Nepal, . . . F Muller, B Lenhard. 

Cell reports 8:1974-1988 (2014). Ptasinska A, SA Assi, N Martinez-Soria, MR Imperato, J Piper, P Cauchy, . . . C Bonifer

Development 141:715-724 (2014). Roberts JA, I Miguel-Escalada, KJ Slovik, KT Walsh, Y Hadzhiev, R Sanges, . . . F Muller. .

Leukemia 27:661-670 (2013). Clarke M, S Dumon, C Ward, R Jager, S Freeman, B Dawood, . . . J Frampton, P Garcia. .

Genome Res 23:1938-1950 (2013). Nepal C, Y Hadzhiev, C Previti, V Haberle, N Li, H Takahashi, . . . F Muller. .

Leukemia 27:1487-1496 (2013). Volpe G, DS Walton, W Del Pozzo, P Garcia, E Dasse, LP O'Neill, . . . J Frampton, S Dumon. .