Dr Gabriela Da Silva Xavier MEd, PhD, SFHEA

Gabriela Da Silva Xavier

Department of Metabolism and Systems Science
Associate Professor in Cellular Metabolism
Lead for Postgraduate Research in the Department of Metabolism and Systems Science

Contact details

Address
College of Medicine and Health
University Âé¶¹¾«Ñ¡
Edgbaston
Birmingham
B15 2TT
UK

Gaby is an Associate Professor in Cellular Metabolism and a Senior Fellow of the Higher Education Academy.  An expert in pancreatic islet biology, she is interested in energy homeostasis, particularly in fuel sensing mechanisms that may play a role in diabetes and obesity.  She is currently also studying mechanisms behind some rare metabolic conditions. Gaby is a team member of the .  An active member of the , she is Deputy Chair of the Grant Committee and co-Editor-in-Chief of two of the Society’s journals- Journal of Endocrinology (JOE) and Journal of Molecular Endocrinology- having previously served on the Science Committee.  Gaby previously served as a member of the Biotechnology and Biological Sciences Research Council's grant Committee C.

  • ORCID ID:  
  • Bluesky: gabysxavier.bsky.social

Qualifications

  • 2019- MEd in Education (Imperial College London)
  • 2017 PG Diploma in Education (Imperial College London)
  • 2016 PG Certificate in Education (Imperial College London)
  • 2001 PhD in Biochemistry (University of Bristol)
  • 1997 BSc Biochemistry (University of Bristol)

Teaching

  • 2022 - Module Lead, ICS Endocrinology and Metabolism (year 3, MBChB intercalation year), Medical and Dental School, University Âé¶¹¾«Ñ¡
  • PGR QA lead (2018-)

Research

Gaby's research interest is primarily on glucose sensing mechanisms in pancreatic islets, mainly how fuel sensing protein kinases such as AMP activated protein kinase (AMPK) (1-5) and the distally related, PAS domain containing protein kinase (PASK) (6;7), may be involved in the regulation of pancreatic hormone production and release.Ìý Initially, the interest was in the signaling pathways regulated by these kinases as they may be important in the search for therapeutic targets to improve b cell function and treat diabetes.Ìý It is now apparent that these kinases are important in diabetes and obesity.

Gaby's research group was the first to show that PASK gene expression is lower in pancreatic islets from type 2 diabetic patientsÌývsÌýnon-diabetic individuals (7), indicating that loss of PASK may be related to the loss of islet function seen in type 2 diabetes. Gaby's research group has also shown that PASK is a regulator of insulin gene expression in pancreatic β cells (6), and may be involved in the regulation of glucagon release from pancreatic α cells (7).Ìý The group also showed that PASK may have a role in the glucose sensing pathway in α cells, and may regulate glucagon secretion through its effects on insulin production in pancreatic β cells (1; 7).Ìý The group also showed that the expression of the gene encoding for the AMPK α-2 catalytic subunit is increased in α cells in whichÌýPaskÌýgene expression has been silenced (7).Ìý AMPK has been implicated in the regulation of glucagon release (8), raising the possibility that PASK may regulate glucose sensing in the α cell through the modulation of AMPKα-2 content.Ìý The group's studies on embryonic pancreatic explants also indicate that PASK may have a role in pancreatic development (7).Ìý

The research group's current unpublished studies revealed a potential role for PASK in the regulation of food intake and circadian control of glucose homeostasis.Ìý PASK may also be a modulator of the anorectic effects of the gut hormone, glucagon-like peptide 1 (GLP-1).Ìý These effects are only apparent in mice systemically null forÌýPask- they are absent in the islet-specificÌýPaskÌýnull mice, indicating that these responses are mediated by a signal distal from the pancreatic islet.Ìý The research group suspect that this signal may originate from the brain and hypothesise that this may involved the regulation of AMPKα-2 by PASK (as we have seen in islets of Langerhans).Ìý Ìý

Gaby's second line of research, funded through an MRC programme grant on which she is a co-investigator, was to study how targets identified by genome wide association studies for type 2 diabetes risk genes, may have a role in pancreatic islet function.Ìý Thus, Gaby's research group showed that the transcription factor, Transcription Factor 7-Like 2 (TCF7L2), a distal component of the Wnt signalling pathway, may be important in the regulation of β cell function and insulin release (9-11).Ìý In collaboration with Dr. Lorna Harries (University of Exeter), the group found that an alternative transcript ofÌýTCF7L2Ìýmay be a dominant negative isoform of TCF7L2 and may contribute to type 2 diabetes susceptibility (10).Ìý

The research group generated and characterised pancreas and pancreatic β cell specificÌýTcf7l2Ìýnull mice to assess the impact of the loss ofÌýTcf7l2Ìýgene expression on glucose homeostasis (10-11).Ìý The data indicates that Tcf7l2 may be a regulator of the expression of the glucagon-like peptide 1 (GLP-1) receptor in the islet and required for adequate signalling via the incretin GLP-1.Ìý The data indicates that mice in whichÌý°Õ³¦´Ú7±ô2Ìýgene expression is selectively ablated in pancreatic α cells (12) and adipocytes (Nguyen-Tu, in press, Diabetologia) also exhibit glucose dyshomeostasis and lowered plasma incretins.Ìý

To conduct the research described above, Gaby utilizes techniques which are common in most islet laboratories- biochemical measurements, islet extraction and cell culture, real-time PCR, imaging techniques on live/fixed cells and fixed tissue, physiological measurements in mouse models such as monitoring of glucose and insulin tolerance.Ìý However, Gaby's current research onÌýPaskÌý²¹²Ô»åÌýTcf7l2Ìýis moving towards the study of the function of these gene products in extra-pancreatic tissues, with a focus on tissue cross-talk in the regulation of energy homeostasis.Ìý

This has led Gaby to use techniques that are not part of the customary repertoire for traditional islet labs- indirect calorimetry (CLAMS), body composition analysis (EchoMRI), analysis of bone (density, structure, fracture, endocrine function), manipulation of circadian rhythm, etc.Ìý Additionally, in collaboration with Dr Paul Kemp and Dr Amanda Natanek (Imperial College London), Gaby looked at pharmacological approaches to alter muscle fibre type and/or functional islet cell mass as a potential means to modulate glucose homeostasis.Ìý In this context she has been using imaging techniques to look at muscle fibre type and islet mass (in conjunction with some of the other techniques listed above) in mouse models of diabetes following pharmacological intervention.Ìý

ÌýReferences

1. ÌýÌýÌýÌýÌýÌýÌý da Silva Xavier, G.Ìýet al.ÌýProc.Natl.Acad.Sci.U.S.AÌý97: 4023-4028 (2000)

2. ÌýÌýÌýÌýÌýÌýÌý da Silva Xavier, G.Ìýet al.ÌýBiochem.J. 371: 761-774(2003)

3. ÌýÌýÌýÌýÌýÌýÌý Leclerc, I.Ìýet al.ÌýAm.J.Physiol Endocrinol.MetabÌý286: E1023-E1031 (2004)

4. ÌýÌýÌýÌýÌýÌýÌý Sun, G.Ìýet al.ÌýDiabetologiaÌý53: 924-936 (2010)

5. ÌýÌýÌýÌýÌýÌýÌý Tsuboi, T.Ìýet al.ÌýJ.Biol.Chem. 278: 52042-52051 (2003)

6. ÌýÌýÌýÌýÌýÌýÌý da Silva Xavier, G.Ìýet al.ÌýÌýProc.Natl.Acad.Sci.U.S.AÌý101: 8319-8324 (2004)

7. ÌýÌýÌýÌýÌýÌýÌý da Silva Xavier, G.Ìýet al.ÌýDiabetologiaÌý54: 819-827 (2011)Ìý

8. ÌýÌýÌýÌýÌýÌýÌý Leclerc, I.Ìýet al.ÌýDiabetologiaÌý54: 125-134 (2011)

9.ÌýÌýÌýÌýÌýÌýÌýÌý da Silva Xavier, G.Ìýet al.ÌýDiabetes.Ìý58: 894-905 (2009)

10.ÌýÌýÌýÌýÌýÌý da Silva Xavier, G.Ìýet al.ÌýDiabetologiaÌý55:2667-76 (2012)

11.ÌýÌýÌýÌýÌýÌý Mitchell, RÌýet al.ÌýHMGÌý24:1390-9 (2015)

12.Ìý Ìý Ìý ÌýNguyen-Tu, MÌýet al.Ìý Diabetologia (in press)

Other activities

2019 - External Examiner for BSc Medical Physiology and iBSc Physiology, King’s College London, United Kingdom

Publications

Recent publications

Article

Da Silva Xavier, G & Ntonia, I 2025, '', Discover Education, vol. 4, 95.

Mueller, JW, Thomas, P, Dalgaard, LT & Da Silva Xavier, G 2024, '', Essays in Biochemistry, vol. 68, no. 14, pp. 509–522.

Ali, S, Baig, S, Wanninayake, S, da Silva Xavier, G, Dawson, C, Paisey, R & Geberhiwot, T 2023, '', Diabetes, obesity & metabolism, pp. 1-8.

Nguyen-Tu, M-S, Martinez-Sanchez, A, Leclerc, I, Rutter, GA & da Silva Xavier, G 2021, '', Diabetologia, vol. 64, no. 1, pp. 129-141.

Viloria, KM, Nasteska, D, Briant, LJB, Heising, S, Larner, D, Fine, N, Ashford, F, Da Silva Xavier, G, Jimenez-Gonzalez, M, Hasib, A, Cuozzo, F, Manning Fox, J, MacDonald, P, Akerman, I, Lavery, G, Flaxman, C, Morgan, N, Richardson, S, Hewison, M & Hodson, D 2020, '', Cell Reports, vol. 31, no. 11, 107761.

Davis, SPX, Kumar, S, Alexandrov, Y, Bhargava, A, da Silva Xavier, G, Rutter, GA, Frankel, P, Sahai, E, Flaxman, S, French, PMW & McGinty, J 2019, '', Journal of Biophotonics, vol. 12, no. 12, e201900128.

Editorial

Dantas, T, Abreu, CMC, De-Castro, MJG, Grosso, AR, de Sousa Valente, J & da Silva Xavier, G 2024, '', Communications Biology, vol. 7, no. 1, 537.

Haluzik, M & da Silva Xavier, G 2024, '', Journal of Molecular Endocrinology, vol. 74, no. 1, e240124.

Haluzik, M & da Silva Xavier, G 2024, '', Journal of Endocrinology, vol. 264, no. 1, e240305.

Zhang, Q, Huising, MO, Da Silva Xavier, G & Hauge-Evans, AC 2023, '', Frontiers in Endocrinology, vol. 14, 1182897.

Other contribution

Ghumra, A (ed.), Acil, N, Barker, J, Baziotis, C, Beltran Hernandez, A, Dai, D, Deakin, J, Dettmer, S, Fentham, D, Fontrodona-Bach, A, Hart-Villamil, R, Jenkins, B, Jia, X, Jones, AM, Morris, A, Murakami, A, Seymour, R, Da Silva Xavier, G, Smith, C, Tashev, S, Turner, J, Uche, EO, Xia, X & Zhong, J 2023, . University Âé¶¹¾«Ñ¡.

Preprint

Nguyen-Tu, M-S, Martinez-Sanchez, A, Leclerc, I, Rutter, GA & Xavier, GDS 2020 '' bioRxiv.

Review article

Thomas, P, Gallagher, MT & Da Silva Xavier, G 2023, '', Frontiers in Endocrinology, vol. 14, 1275835.

Da Silva Xavier, G & Rutter, GA 2019, '', Journal of Molecular Biology.

Working paper

Viloria, K, Nasteska, D, Briant, LJB, Heising, S, Larner, D, Fine, NHF, Ashford, FB, Xavier, GDS, Ramos, MJ, Fox, JEM, MacDonald, PE, Akerman, I, Lavery, GG, Flaxman, C, Morgan, NG, Richardson, SJ, Hewison, M & Hodson, DJ 2019 '' bioRxiv.